HL Paper 2

The population of mosquitoes in a specific area around a lake is controlled by pesticide. The rate of decrease of the number of mosquitoes is proportional to the number of mosquitoes at any time *t*. Given that the population decreases from 500 000 to 400 000 in a five year period, find the time it takes in years for the population of mosquitoes to decrease by half.

The acceleration in ms⁻² of a particle moving in a straight line at time t seconds, $t \ge 0$, is given by the formula $a = -\frac{1}{2}v$. When t = 0, the velocity is 40 ms⁻¹.

Find an expression for v in terms of t.

An open glass is created by rotating the curve $y = x^2$, defined in the domain $x \in [0, 10]$, 2π radians about the y-axis. Units on the coordinate axes are defined to be in centimetres.

a.	When the glass contains water to a height h cm, find the volume V of water in terms of h .	[3]
b.	If the water in the glass evaporates at the rate of 3 cm ³ per hour for each cm ² of exposed surface area of the water, show that,	[6]
	$rac{\mathrm{d}V}{\mathrm{d}t}=-3\sqrt{2\pi V}$, where t is measured in hours.	
c.	If the glass is filled completely, how long will it take for all the water to evaporate?	[7]

Consider the differential equation $y \frac{dy}{dx} = \cos 2x$.

a. (i) Show that the function $y = \cos x + \sin x$ satisfies the differential equation.

(ii) Find the general solution of the differential equation. Express your solution in the form y = f(x), involving a constant of integration.

[10]

- (iii) For which value of the constant of integration does your solution coincide with the function given in part (i)?
- b. A different solution of the differential equation, satisfying y = 2 when $x = \frac{\pi}{4}$, defines a curve C. [12]
 - (i) Determine the equation of C in the form y = g(x), and state the range of the function g.

A region *R* in the *xy* plane is bounded by *C*, the *x*-axis and the vertical lines x = 0 and $x = \frac{\pi}{2}$.

(ii) Find the area of R.

The acceleration of a car is $\frac{1}{40}(60 - v) \text{ ms}^{-2}$, when its velocity is $v \text{ ms}^{-2}$. Given the car starts from rest, find the velocity of the car after 30 seconds.

- (a) Solve the differential equation $\frac{\cos^2 x}{e^y} e^{e^y} \frac{dy}{dx} = 0$, given that y = 0 when $x = \pi$.
- (b) Find the value of y when $x = \frac{\pi}{2}$.

A. Prove by mathematical induction that, for $n \in \mathbb{Z}^+$,

$$1 + 2\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)^3 + \ldots + n\left(\frac{1}{2}\right)^{n-1} = 4 - \frac{n+2}{2^{n-1}}$$

B. (a) Using integration by parts, show that $\int e^{2x} \sin x dx = \frac{1}{5} e^{2x} (2 \sin x - \cos x) + C$.

(b) Solve the differential equation $\frac{dy}{dx} = \sqrt{1 - y^2} e^{2x} \sin x$, given that y = 0 when x = 0, writing your answer in the form y = f(x).

(c) (i) Sketch the graph of y = f(x), found in part (b), for $0 \le x \le 1.5$.

Determine the coordinates of the point P, the first positive intercept on the x-axis, and mark it on your sketch.

(ii) The region bounded by the graph of y = f(x) and the x-axis, between the origin and P, is rotated 360° about the x-axis to form a solid of revolution.

Calculate the volume of this solid.

A particle moves in a straight line with velocity v metres per second. At any time t seconds, $0 \le t < \frac{3\pi}{4}$, the velocity is given by the differential equation $\frac{dv}{dt} + v^2 + 1 = 0$. It is also given that v = 1 when t = 0.

a.	Find an expression for v in terms of t.	[/]
b.	Sketch the graph of v against t , clearly showing the coordinates of any intercepts, and the equations of any asymptotes.	[3]
c.	(i) Write down the time T at which the velocity is zero.	[3]
	(ii) Find the distance travelled in the interval $[0, T]$.	
d.	Find an expression for s, the displacement, in terms of t, given that $s = 0$ when $t = 0$.	[5]
e.	Hence, or otherwise, show that $s = \frac{1}{2} \ln \frac{2}{1+v^2}$.	[4]

[8]

[17]